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Abstract. We present a theoretical study of the spin-dependent conductance spectra in a
FM/semiconductor quantum-dot (QD)/FM system. Both the Rashba spin-orbit (SO) coupling in the QD
and spin-flip scattering caused by magnetic barrier impurities are taken into account. It is found that in
the single-level QD system with parallel magnetic moments in the two FM leads, due to the interference
between different tunneling paths through the spin-degenerate level, a dip or a narrow resonant peak can
appear in the conductance spectra, which depends on the property of the spin-flip scattering. When the
magnetizations of the two FM leads are noncollinear, the resonant peak can be transformed into a dip.
The Rashba SO coupling manifests itself by a Rashba phase factor, which changes the phase information
of every tunneling path and can greatly modulate the conductance. When the QD has multiple levels,
the Rashba interlevel spin-flip effect appears, which changes the topological property of the structure. Its
interplay with the Rashba phase can directly tune the coupling strengths between dot and leads, and can
result in switching from resonance into antiresonance in the conductance spectra.

PACS. 72.25.Dc Spin polarized transport in semiconductors – 73.21.La Quantum dots – 73.23.-b Elec-
tronic transport in mesoscopic systems

Since the giant magnetoresistance effect (GMR) in mag-
netic multilayers was discovered [1–3], there has been in-
creasing interest in the field called spintronics [4]. This
novel field studies the manipulation of the spin-degree
of freedom of electron and in which an important as-
pect relates to the transport of spin-polarized current in
magnetic materials. The spin-dependent transport has al-
ready led to lots of new phenomena and devices. For
instance, spin-valve effect was discovered in ferromag-
net/insulator/ferromagnet structures [5]. GMR was dis-
covered in Fe/Cr multilayers that when a magnetic field
is applied, the electric resistance of the magnetic multi-
layers changes drastically. This is due to the differences in
spin-dependent resistivity between the spin-up and spin-
down electrons in magnetic multilayers. Applications for
GMR structure include many important devices such as
magnetic field sensors, read heads for hard drives, and
magnetoresistive random access memory, etc.

Nowadays nano-technology allows us to fabricate
mesoscopic QD devices [6–11], whose length scale is less
than the phase-breaking length, and within which the en-
ergy levels are discrete and the quantum mechanism plays
an important role. It has potential applications in future
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quantum computation and quantum information technol-
ogy. In 1990, Datta and Das proposed a device named
Spin Field Effect Transistor [12] (Spin-FET), where the
current is modulated by applying a gate voltage to alter
the strength of Rashba SO coupling [13]. After the pro-
posal of Spin-FET, lots of research work has focused on
it and the Rashba SO coupling caused by structure in-
version asymmetry also gains much attention, because its
strength can be tuned over a wide range by the external
field [14,15]. Recent discovery of intrinsic spin-Hall effect
in p-doped semiconductors by Murakami et al. [16] and in
Rashba SO coupled two-dimensional electron gas (2DEG)
by Sinova et al. [17] may develop a new way to effectively
generate spin-polarized current in paramagnetic semicon-
ductors, which is the fundamental condition of realizing
spintronics devices.

In this paper we investigate transport properties of a
FM/QD/FM tunneling system [18–22] sketched in Fig-
ure 1a, where the QD is made of 2DEG, and electrons are
confined in the y direction, which leads to a finite Rashba
SO coupling [23]. Here we neglect the Coulomb interaction
in the QD in order to get a clear insight into the physics
of this system. Owing to the magnetic barrier impuri-
ties, spin-flip scattering can occur during the tunneling
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Fig. 1. (a) The tunneling system with ferromagnetic leads
coupled to a semiconductor QD. The QD is made of 2DEG
which is confined in the y axis. Electrons transport along the
x direction. (b) The figure sketches different tunneling paths
between the two FM leads for spin-up and spin-down electrons.

process [24,25], which introduces more paths for electrons
tunneling through the structure.

We model the system with the Hamiltonian H = Hd +∑
α Hα +

∑
α HTα, α = L, R. Here Hα describes the αth

FM lead and can be written as Hα =
∑

kασ

εkασa†
kασakασ,

where a†
kασ (akασ) is the creation (annihilation) opera-

tor of electron in lead α with wave vector k and spin σ
(quantized along the magnetic moment of lead α). The
Hamiltonian of the QD in the absence of Rashba SO in-
teraction is Hd =

∑

nσ
εnσd†nσdnσ, and the corresponding

tunneling Hamiltonian between the QD and the αth lead
is [24,26]

HTα =
∑

kαnσσ′
[T σσ′

kαn(cos
θα

2
a†

kασ−σ sin
θα

2
a†

kασ̄)dnσ′+H.c.],

(1)
where σ =↑ and ↓ correspond to σ = ±1, σ̄ = −σ, θα is the
relative angle between the magnetic moment of the αth
lead and the spin quantization axis on the dot (z axis), d†nσ

(dnσ) is the creation (annihilation) operator of electron on
the nth level of the dot with spin σ, and T σσ′

kαn are the dot-
lead coupling matrix elements, which are assumed to be
real numbers in this work. Now we take into account the
Rashba SO interaction in the QD, which can be written
as [23]

HSO =
1
2�

[α(x)σ̂zpx − σ̂zpxα(x)] − α(x)σ̂xpz/�

≡ HR1 + HR2. (2)

Here α(x) is the Rashba SO coupling parameter. For
electrons transport along the x axis, HR1 causes the
spin-precession, while HR2 causes the spin-flipping, which
is similar to the intersubband mixing effect. Accord-
ing to reference [23], after a unitary transformation U ,
HR1 disappears with only a phase factor e−iσ′φα

so left,

which multiplies on the tunneling coefficient T σσ′
kαn. Here

we have φL
so = 0 and φR

so =
∫ xR

xL
kR(x)dx ≡ φso,

where kR(x) = α(x)m∗/�
2. If we assume α(x) is in-

dependent of x, then φso = αm∗L/�
2 with L the

length of the dot. After the transformation, HR2 can
be written as HR2 =

∑

m,n
tmnd†m↓dn↑ + H.c., where

tmn ≡ 〈m ↓ |U †HR2U |n ↑〉 and tmn = −tnm (tnn = 0),
which means that Rashba SO coupling only induces in-
terlevel spin-flipping rather than intralevel spin-flipping.
Both φso and tmn are proportional to α. In reference [23]
the authors had estimated the magnitudes of φso and
tmn. They showed that φso could be tuned to π/2 experi-
mentally, and tmn has the typical magnitude of 100 µeV,
which can be the same with the magnitudes of the cou-
pling strength and level separation. Because other parts
of the Hamiltonian remains unchanged under the transfor-
mation, we can rewrite the Hamiltonian in the presence
of Rashba SO interaction as

Hd =
∑

nσ

εnσd†nσdnσ +
∑

mn

(tmnd†m↓dn↑ + H.c.), (3)

and
HTα =

∑

kαnσσ′
(T̃ σσ′

kαna†
kασdnσ′ + H.c.), (4)

where

T̃ ↑↑
kαn = (T ↑↑

kαn cos
θα

2
+ T ↓↑

kαn sin
θα

2
)e−iφα

so ,

T̃ ↑↓
kαn = (T ↓↓

kαn sin
θα

2
+ T ↑↓

kαn cos
θα

2
)eiφα

so ,

T̃ ↓↑
kαn

= (−T ↑↑
kαn sin

θα

2
+ T ↓↑

kαn cos
θα

2
)e−iφα

so ,

T̃ ↓↓
kαn = (T ↓↓

kαn cos
θα

2
− T ↑↓

kαn sin
θα

2
)eiφα

so . (5)

For simplicity, we assume T σσ′
kαn to be independent of wave

vector kα and rewrite them as T ↑↑
kαn = T α

n1, T ↓↓
kαn = T α

n2,
T ↑↓

kαn = T α
n3, and T ↓↑

kαn = T α
n4, and replace the subscript

kα in T̃ σσ′
kαn by α. In this work we set T α

n1 = T α
n2 except in

Figures 5c and 5d, and we denote both of them by T α
n1. T α

n3

and T α
n4 describe the spin-flip tunneling process, and their

values depend on the property of the magnetic barrier
impurities. Here we assume T α

n3 and T α
n4 to be lesser than

T α
n1, which means that the spin states of most electrons

are not affected by the impurities during the tunneling
process.

Within the standard Green function technique [27] the
expression of the spin-dependent current can be written
as

Iα
σ = −2e

�
Im

∫
dε

2π
Tr[(Gr(ε)fα(ε) +

1
2
G<(ε))Γ ασ]. (6)

Without loss of generality, in the following we investigate
the current flowing out of the left lead. After some alge-
bra we gain the expression of the spin-dependent linear
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conductance in zero temperature limit as follows

Gσ =
e2

h
Tr(GrΓ RGaΓ Lσ). (7)

Here Gr(a) and Γ α(= Γ α↑ + Γ α↓) are the retarded (ad-
vanced) Green function of the dot and the coupling matrix
between the dot and the αth lead, respectively. Both Gr(a)

and Γ ασ are 2n × 2n matrices, where n is the number of
energy levels in the QD. They can also be taken as n × n

matrices, whose elements, G
r(a)
nn′ and Γ ασ

nn′ , are 2 × 2 ma-
trices in spin space. Gr

nn′ has the expression

Gr
nn′ =

(
Gr↑↑

nn′ Gr↑↓
nn′

Gr↓↑
nn′ Gr↓↓

nn′

)

, (8)

where Grσσ′
nn′ =�d†nσ | dn′σ′ �r, and Ga

nn = [Gr
n′n]†. Γ ασ

nn′
has the expression

Γ ασ
nn′ =

∑

kα

2πδ(ω − εkασ)
(

T̃ σ↑∗
αn T̃ σ↑

αn′ T̃ σ↑∗
αn T̃ σ↓

αn′

T̃ σ↓∗
αn T̃ σ↑

αn′ T̃ σ↓∗
αn T̃ σ↓

αn′

)

. (9)

Here we have
∑

kα

δ(ω − εkασ) = ρασ, ρα↑ + ρα↓ = ρα,

and Pα = (ρα↑ − ρα↓)/ρα, where ρασ and Pα are the
spin-dependent density of states and spin-polarization
rate in the αth lead, respectively. For convenience, we
denote 2πραT α

niT
α
n′j by T α

niT
α
n′j (i, j = 1, 2, 3, 4) in this

manuscript. PL = PR = P > 0 is assumed in this work,
i.e., the spin-up electrons dominant. Then the elements of
Γ α↑

nn′ and Γ α↓
nn′ can be explicitly written as

Γ α↑
nn′(1, 1) =

1 + P

2

(

T α
n1 cos

θα

2
+ T α

n4 sin
θα

2

)

×
(

T α
n′1 cos

θα

2
+ T α

n′4 sin
θα

2

)

,

Γ α↑
nn′(1, 2) =

1 + P

2

(

T α
n1 cos

θα

2
+ T α

n4 sin
θα

2

)

×
(

T α
n′2 sin

θα

2
+ T α

n′3 cos
θα

2

)

e2iφα
so ,

Γ α↑
nn′(2, 1) =

1 + P

2

(

T α
n2 sin

θα

2
+ T α

n3 cos
θα

2

)

×
(

T α
n′1 cos

θα

2
+ T α

n′4 sin
θα

2

)

e−2iφα
so ,

Γ α↑
nn′(2, 2) =

1 + P

2

(

T α
n2 sin

θα

2
+ T α

n3 cos
θα

2

)

×
(

T α
n′2 sin

θα

2
+ T α

n′3 cos
θα

2

)

, (10)

and

Γ α↓
nn′(1, 1) =

1 − P

2

(

−T α
n1 sin

θα

2
+ T α

n4 cos
θα

2

)

×
(

−T α
n′1 sin

θα

2
+ T α

n′4 cos
θα

2

)

,

Γ α↓
nn′(1, 2) =

1 − P

2

(

−T α
n1 sin

θα

2
+ T α

n4 cos
θα

2

)

×
(

T α
n′2 cos

θα

2
− T α

n′3 sin
θα

2

)

e2iφα
so ,

Γ α↓
nn′(2, 1) =

1 − P

2

(

T α
n2 cos

θα

2
− T α

n3 sin
θα

2

)

×
(

−T α
n′1 sin

θα

2
+ T α

n′4 cos
θα

2

)

e−2iφα
so ,

Γ α↓
nn′(2, 2) =

1 − P

2

(

T α
n2 cos

θα

2
− T α

n3 sin
θα

2

)

×
(

T α
n′2 cos

θα

2
− T α

n′3 sin
θα

2

)

. (11)

With the equation of motion method we get Gr(ω) =
[A(ω) − R + iΓ/2]−1, where

Ann′(ω) = δnn′

(
ω − εn↑ 0

0 ω − εn↓

)

,

Rnn′ =
(

0 t∗n′n
tnn′ 0

)

, (12)

and Γ = Γ L + Γ R. The Rashba spin-precession manifests
itself by the phase factor e±2iφso in matrix Γ , while the
Rashba interlevel spin-flip effect is manifested by the ma-
trix R. In this work we focus on two situations. One is the
QD with one energy level (n = 1), the other is the QD
with two levels (n = 2), which can be spin-degenerate or
non-degenerate. In the former case the matrix R vanishes
because tnn′ doesn’t have diagonal components, and here
we present the expression of Gr as follows:

Gr(ω) =
(

ω − ε0↑ + i
2Γ11

i
2Γ12

i
2Γ21 ω − ε0↓ + i

2Γ22

)−1

=
1
|G|

(
ω − ε0↓ + i

2Γ22 − i
2Γ12

− i
2Γ21 ω − ε0↑ + i

2Γ11

)

, (13)

where |G| = (ω−ε0↑+iΓ11/2)(ω−ε0↓+iΓ22/2)+Γ12Γ21/4.
In the case of a two-level QD t12(= −t21) are finite, and
we assume t12(= t) is a real quantity, which represents the
strength of Rashba interlevel spin-flip effect. Our discus-
sion is also valid in multilevel systems provided that the
energy level separation is much larger than the coupling
strength, because then the transport properties at one res-
onant level are mainly affected by the nearby level, and
the influences from other levels are negligible. In the strong
coupling limit, the influences from all levels are needed to
be considered when we investigate the conductance spec-
tra at one energy level, and the situation becomes much
more complex, which is beyond the scope of our discus-
sion.
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Fig. 2. The linear conductance G and Gσ for different sets of
parameters assuming only spin-flip scattering in the left barrier
(T L

4 = T R
3 = T R

4 = 0) and absent Rashba SO coupling in the
dot. (a) Dependence of the total conductance on the relative
magnetization angle θ of the two leads for different T L

3 param-
eters and fixed lead polarization P = 0.8. (b) Energy-resolved
G↑ for different lead polarizations P in the case of parallel
leads (θL = θR = 0) and fixed T L

3 = 0.8. The inset shows
the corresponding situation for G↓ for P = 0.2 and P = 0.8,
respectively. (c) G↑ for different T L

3 parameters in the case of
parallel leads and P = 0.8 and (d) P = 1, respectively. The
inset of (d) shows the corresponding situation for antiparallel
leads configuration for T L

3 = 0, 0.4, and 0.8, respectively. The
solid, dashed, dotted, and dash-dotted lines in (a), (c), and (d)
correspond to T L

3 = 0, 0.4, 0.6, and 0.8, and in (b) correspond
to P = 0, 0.4, 0.6, and 0.8, respectively. For all figures ε0 = 0
and T L

1 = T R
1 = 1 are assumed.

First we study the case that the dot has one energy
level, which is assumed to be spin-degenerate (ε↑ = ε↓). In
this situation we omit the subscript n in all formulas. From
the expression of Γ ασ we know that even when θL = θR =
0, the off-diagonal elements of Γ ασ are finite, provided
that T α

3 or T α
4 is non-zero. This indicates that T α

3 and T α
4

have the effect to rotate the direction of the magnetization
of the αth FM lead, and can be understood as follows.
Owing to the spin-flip effect, electrons can tunnel onto
both spin-up and down states in the dot, which is similar
to the case that the magnetizations of the two leads are
noncollinear. The phenomenon is revealed in Figure 2a,
which shows the conductance (in the unit of e2/h) as a
function of the relative angle between the two leads. For
T L

3 = 0, G decreases monotonously as θ varies from 0 to
π, which is the normal TMR effect. When T L

3 is finite, the

magnetization of the left lead has been essentially rotated,
so G first increases and then decreases with θ. We can
also see that with the introduction of spin-flip effect, the
conductance has been suppressed. So the spin-flip effect
has some other influences on the transport property, which
will be investigated below.

Now we consider a simple situation that the magneti-
zations of the two leads are parallel and the Rashba SO
coupling is absent. To get a clear physics picture we take
into account the spin-flip effect by choosing only T L

3 to
be finite. Figures 2b–2d show the spin-dependent conduc-
tance spectra for different parameters. In Figure 2b, when
the polarization rate P is small, G↑ shows a resonant peak
at the spin-degenerate level ε0, while as P increases, the
peak reduces to a dip. At the non-resonant energy region,
G↑ increases with P . In the inset we can see G↓ always
shows a peak at ε0, and its value is suppressed by P . In
Figure 2c we plot G↑ for different values of T L

3 . When
T L

3 = 0, the conductance reaches the full transmission,
and with T L

3 increasing, the conductance is reduced, while
a dip appears and the peak is split into two lower peaks
with equal height. So we conclude that when T L

3 is finite,
the resonant peak of G↑ at ε0 can be transformed into a
dip, provided that P and T L

3 are large enough, while in the
spectra of G↓ the resonant peak always exists. This is dif-
ferent from the case when spin-flip effect is absent, where
there is always a resonant peak at ε0 in the spectra of
both G↑ and G↓. These characteristics can be understood
as follows. From equation (7), we have

Gσ =
∣
∣T σ

1 +T σ
2 +T σ

3 +T σ
4

∣
∣2 +

∣
∣T σ

5 +T σ
6 +T σ

7 +T σ
8

∣
∣2, (14)

where

T σ
1 = Gr↑↑

√

Γ R↑
11 Γ Lσ

11 eiφso ,

T σ
2 = Gr↓↓

√

Γ R↑
22 Γ Lσ

22 e−iφso ,

T σ
3 = Gr↓↑

√

Γ R↑
11 Γ Lσ

22 eiφso ,

T σ
4 = Gr↑↓

√

Γ R↑
22 Γ Lσ

11 e−iφso ,

T σ
5 = Gr↑↑

√

Γ R↓
11 Γ Lσ

11 eiφso ,

T σ
6 = Gr↓↓

√

Γ R↓
22 Γ Lσ

22 e−iφso ,

T σ
7 = Gr↓↑

√

Γ R↓
11 Γ Lσ

22 eiφso ,

T σ
8 = Gr↑↓

√

Γ R↓
22 Γ Lσ

11 e−iφso . (15)

Here Γ ασ
ij = Γ ασ(i, j). These quantities are the trans-

mission amplitudes for electron with spin σ tunnels
from the left lead to the right one through different
paths. Taking G↑ for example. As depicted in Fig-
ure 1b, T ↑

1 is the transmission amplitude via tunnel-
ing path ab, and T ↑

3 is the transmission amplitude
via tunneling path cgb, etc. This can be seen more
clearly in the situation θL = θR = 0, where we
have T ↑

1 = Gr↑↑√(1 + P )/2T L
1

√
(1 + P )/2T R

1 eiφso and
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T ↑
3 = Gr↓↑√(1 + P )/2T L

3

√
(1 + P )/2T R

1 eiφso , which
just correspond to paths ab and cgb. Here we list all the
paths for G↑: T ↑

1 ∼ ab, T ↑
2 ∼ cf , T ↑

3 ∼ cgb, T ↑
4 ∼ ahf ,

T ↑
5 ∼ ae, T ↑

6 ∼ cj, T ↑
7 ∼ cge, and T ↑

8 ∼ ahj. The first four
paths, which interfere with each other, correspond to the
spin-up electrons tunnel to the spin-up states in the right
lead, while the latter four correspond to the spin-up elec-
trons tunnel to the spin-down states. Although there is no
intradot coupling between the spin-up and down states in
the dot, paths g and h still exist, which correspond to the
transition through the leads [28]. For example, an elec-
tron tunnels via path g actually means that it tunnels
from the spin-down state to the spin-up state in the dot
via the left lead (paths ca and id), or via the right lead
(paths je and fb). This can be seen from the expression
of Gr↓↑, which describes path g. Here Gr↓↑ is proportional
to Γ12(= Γ L↑

12 + Γ L↓
12 + Γ R↑

12 + Γ R↓
12 ) (|Γ ασ

12 | =
√

Γ ασ
11 Γ ασ

22 ),
and these four terms just describe the four paths ca, id, je,
and fb.

According to the parameters we set in Figures 2b
and 2c, T ↑

1 , T ↑
3 , T ↑

6 , and T ↑
8 contribute to G↑, while

only T ↓
6 contribute to G↓. Then we have G↑ =

(1 + P )2
∣
∣Gr↑↑T L

1 T R
1 + Gr↓↑T L

3 T R
1

∣
∣2/4 + (1 + P )(1 −

P )
∣
∣Gr↓↓T L

3 T R
1 + Gr↑↓T L

1 T R
1

∣
∣2/4 and G↓ = (1 −

P )2
∣
∣Gr↓↓T L

1 T R
1

∣
∣/4. So G↓ always shows a peak at ε0.

When P approaches 1, the first term in the expression of
G↑ dominates, so the phenomenon revealed in Figure 2c
is the result of the interference between paths ab and cgb.
From the expression of Gr we see that at the resonant
energy, the two paths have a phase difference π, so the
interference produces the dip in the conductance spec-
tra. When T L

3 /T L
1 approaches 1, |T ↑

3 | gets closed to |T ↑
1 |,

and the destructive interference becomes stronger. At non-
resonant energy, the phase difference between T ↑

1 and T ↑
3

is smaller than π but still larger than π/2, so when we
let T L

3 > 0, the additional path cgb always reduces G↑,
especially at the resonant level. Further more, when we
set P = 1, the two paths have exactly the same amplitude
at ε0, where completely destructive interference happens,
which is shown in Figure 2d. Note that now G↓ = 0 and
G = G↑. This means that in strong polarization system, a
weak spin-flip scattering can completely suppress the con-
ductance at the resonant level. In fact, we have checked
that when T L

4 and T R
4 are also finite, the behavior of both

G↑ and G↓ still holds. But when T R
3 is non-zero at the

same time, the situation becomes much different, which
will be demonstrated later.

When the angle between the magnetizations of the two
leads θ is finite, the dip in the conductance spectra still
exists. In the inset to Figure 2d, we show the spectra of
G↑ for θ = π. With T L

3 increasing, the dip appears, but
the value of G↑ increases with T L

3 . The reason is that
the finite T L

3 rotates the magnetization of the left lead,
which equivalently reduces the relative angle θ and in-
creases the conductance. When Rashba SO coupling are
taken into account, the conductance is suppressed, which
is depicted in Figure 3a. We can see that as the Rashba
phase φso increases from 0 to π/2, the dip at the resonant

Fig. 3. Energy-resolved linear conductance G and G↑ un-
der the influence of Rashba SO coupling. (a) G↑ for differ-
ent Rashba phase factor φso. P = 0.8, T L

3 = T L
4 = T R

4 = 0,
T R

3 /T L
1 = 0.8, θL = 2π/3, and θR = 0. (b) G↑ in the case of

parallel leads with P = 0.4 and T ′/T = 0.8, and the corre-
sponding case for the total conductance G is shown in (c). (d)
G↑ in the case of parallel leads with P = 1 and T ′/T = 0.6.
In (a) the solid, dashed, dotted, and dash-dotted lines corre-
spond to 2φso = 0, π/2, 3π/4, and π, and in (b), (c), and (d)
correspond to 2φso = 0, π/8, π/2, and π, respectively. For all
figures T L

1 = T R
1 =

√
2/2 is assumed.

level changes to a flat peak, and the non-resonant part of
the conductance is greatly reduced. This is because the
Rashba SO coupling changes the relative phases between
different paths, which can be seen from equation (14). So
when the Rashba phase φso is altered, which can be real-
ized by tuning the external electric field, the interferences
between different paths are changed, thus the conductance
spectra is tuned.

Next we investigate the situation that T L
3 = T L

4 =
T R

3 = T R
4 ≡ T ′, i.e., the magnetic impurities exist at

both the left and right barriers, and have equal effects
on spin-up and down electrons. Here we also assume
T L

1 = T R
1 ≡ T , and we denote T 2 by Γ and T ′2/T 2

by γ. Figure 4a shows the conductance spectra for dif-
ferent γ when the magnetizations of the two leads are
parallel. When γ = 0, equation (14) reduces to G↑ =
[(1 + P )2Γ 2/4]

/
[(ω − ε0)2 + (1 + P )2Γ 2/4], and G↑ has

one full resonant peak at ε0 with width (1 + P )Γ , which
is shown by the solid line in Figure 4a. As γ increases, the
peak becomes broad, while there is a more narrow peak
appears at ε0, whose width decreases with γ. When γ = 1,



400 The European Physical Journal B

G↑ � (1 + P )2(1 + γ)2Γ 2/4 + (1 − P 2)γΓ 2

(ω − ε0)2 + (1 + γ)2Γ 2
+

[(1 + γ)2 − (1 + P )2(1 + γ)2/4 − γ(1 − P 2)](1 − P 2)2(1 − γ)4Γ 2/16(1 + γ)4

(ω − ε0)2 + (1 − P 2)2(1 − γ)4Γ 2/16(1 + γ)2
,

(16)

G↑ � [(1 + P )2γ + (1 − P 2)(1 + γ)2/2]Γ 2

(ω − ε0)2 + 4γΓ 2
+

[1 − P 2 − (1 + P )2γ/4 − (1 − P 2)(1 + γ)2/8](1 − γ)4Γ 2/64γ

(ω − ε0)2 + (1 − γ)4Γ 2/64
. (17)

Fig. 4. Energy-resolved linear conductance G and G↑ for dif-
ferent sets of parameters in the absence of Rashba SO coupling.
(a) G↑ for different T ′/T in the case of θR = 0 and P = 0.4.
(b) G↑ for different lead polarizations P with θR = 0 and
T ′/T = 0.8. (c) G↑ for different energy level spacing ∆ε in the
case of θR = 0, P = 0.2, and T ′ = 0.8. The inset shows the cor-
responding situation for total conductance G for ∆ε = 0, 0.3,
and 0.8, respectively. (d) G↑ for different relative magnetiza-
tion angle θ with P = 0.6 and T ′/T = 0.8. (e) G↑ for different
P with θR = π and T ′/T = 0.8. (f) G↑ for different T ′/T when
θR = π and P = 0.8. For all figures θL = 0 and T =

√
2/2 are

assumed. In (a)-(f) the solid, dashed, dotted, and dash-dotted
lines correspond to T ′/T = 0, 0.4, 0.8, 1, P = 0, 0.4, 0.8, 1,
∆ε = 0, 0.16, 0.4, 1, θR = 0, π/4, π/2, π, P = 0, 0.4, 0.8, 1, and
T ′/T = 0, 0.2, 0.5, 0.8, respectively.

we have G↑ = [2(1 + P )Γ 2]
/
[(ω − ε0)2 + 4Γ 2]. Now the

narrow peak disappears with the broad peak left, whose
width and height are 4Γ and (1 + P )/2, respectively. G↓
has the same features as G↑ so we don’t present its fig-
ures here. Note that the similar phenomena had been dis-
cussed in [28], where the parameter α plays the same role
as γ in our work. Compared with their results we know
that the formation of the narrow peak is caused by the

transition of electrons in the dot through the two leads,
i.e., through paths g and h, which are introduced in by
the finite T ′. When γ approaches 1, all paths contribute
to the conductance and have nearly the same amplitude.
Then the interferences lead to the formation of the narrow
peak. In fact, when γ gets closed to 1, equation (14) can
be approximately written as

see equation (16) above.

which is composed of a broad peak with width 2(1 + γ)Γ
and a narrow peak with width (1−P 2)(1−γ)2Γ

/
[2(1+γ)].

We plot G↑ for different P in Figure 4b, and we can see
that the narrow peak appears when G↑ is just equal to
(1 + P )/2 (the vertex of the broad peak), and its width
also decreases with P .

Once the level is no longer spin-degenerate, phase dif-
ferences between paths at ε0 appear, and the resonant
peak is expected to be suppressed. This is depicted in
Figure 4c. As the energy difference between the two states
increases, the narrow peak in the spectra of G↑ soon re-
duces to a dip, and two lower peaks appear at ε↑ and ε↓.
Because T > T ′, the peak at ε↑ is higher than that at
ε↓. In the inset the total conductance shows similar phe-
nomenon, except that the resonant peak is split into two
peaks with the same height.

When the magnetizations of the two leads are non-
collinear, the situation becomes different, which is de-
picted in Figures 4d–4f. In Figure 4d we see that with
the increasing of the relative angle θ, the broad peak still
exists, while the narrow peak is suppressed and finally
becomes an antiresonance when θ = π. In fact, this phe-
nomenon only happens when P is large, which can be seen
in Figure 4e that when θ = π, the narrow peak still exists
for small P . The reason is that when P is small, the rela-
tive angle θ has little influence on transport properties. As
P increases, the peak changes to an antiresonance. The de-
tailed structure can be gained by rewriting equation (14)
when θ = π and γ approached 1 as

see equation (17) above.

The second term corresponds to the narrow peak (dip).
When γ gets closed to 1, the value of the narrow peak (dip)
at ε0 is (P +1)(1−3P ), which is negative when P is large.
So we conclude that when P and θ are positive, the full
transmission disappears, and when P and θ is large, the
resonance can change to an antiresonance. Figure 4f plots
G↑ as increasing γ when θ = π. Now G↑ increases with
γ, except at ε0. When γ approaches 1, the antiresonance
appears, which is similar to the case when θ = 0.

When Rashba SO coupling is considered, each path
gains an additional phase factor e±iφso , so the constructive
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interference disappears and the resonant peak in Figure 4a
is reduced. In Figure 3b we show that when φso increases
from 0, the resonant peak is soon transformed to a dip,
and two asymmetrical lower peaks appear beside it, which
is similar to the case when the degeneracy of the level is
broken. As φso keeps increasing, G↑ is further reduced, and
when 2φso = π, the whole spectra is greatly suppressed.
The corresponding situation for the total conductance is
shown in Figure 3c, where we can see the suppression of
the resonant peak more clearly. In Figure 3d we set P = 1.
As we have stated, now the narrow peak vanishes, but the
full transmission still exists. When φso is finite, the full
transmission suddenly transforms to transmission zero,
which indicates that the Rashba SO coupling generates
phase differences between different paths, and changes the
constructive interference into completely destructive inter-
ference.

Now we discuss the situation that the dot contains
two energy levels, where the Rashba interlevel spin-flip ef-
fect must be taken into account. In fact, if the strength
of Rashba interlevel spin-flip effect t is small compared
to dot-lead coupling strength, all the phenomena we re-
vealed in the single-level situation can be reproduced in
the two-level situation. For instance, we give one figure
corresponding to Figure 4a in the inset of Figure 5a. In the
single-level system, the intralevel spin-flip effect is absent
and the system is simply connected, while in the two-level
system, owing to the interlevel spin-flip effect, the topolog-
ical property of the system has been changed. To some ex-
tent the two-level system is similar to an Aharonov-Bohm
interferometer with parallel-coupled double dots [29–31],
where the Rashba phase factor plays the similar role to
external magnetic flux. So we expect that the interplay
between Rashba phase shift and Rashba spin-flip effect
can produce some new phenomena which are absent in
single-level situation.

Owing to the interlevel spin-flip effect, the number of
the tunneling paths in the two-level system are much more
than that in the single-level system. So the transmission
amplitude picture is no longer convenient to describe such
a system. Here we use the QD-molecule representation,
which is achieved by diagonalizing the Hamiltonian of the
dot:

Hd = ε1↑d
†
1↑d1↑ + ε2↓d

†
2↓d2↓ − td†1↑d2↓ − td†2↓d1↑

+ ε1↓d
†
1↓d1↓ + ε2↑d

†
2↑d2↑ + td†1↓d2↑ + td†2↑d1↓. (18)

From this expression we know that we can diagonalize the
parts of (d1↑, d2↓) and (d1↓, d2↑) separately. Applying two
unitary transformation

(
d2↓
d1↑

)

=
(

cosβ1 sin β1

− sinβ1 cosβ1

) (
d1+

d1−

)

,

(
d2↑
d1↓

)

=
(

cosβ2 − sinβ2

sin β2 cosβ2

) (
d2+

d2−

)

(19)

with β1 = 1
2 arctan[2t/(ε2↓ − ε1↑)] and β2 =

1
2 arctan[2t/(ε2↑ − ε1↓)], Hd is transformed to Hd =
ε1+d†1+d1+ +ε1−d†1−d1−+ε2+d†2+d2+ +ε2−d†2−d2−, where

Fig. 5. Energy-resolved linear conductance G↑ in system with
two energy levels under the influence of Rashba SO coupling.
The solid, dashed, and dash-dotted lines correspond to 2φso =
0, π/2, and π, respectively. (a) G↑ in the case of non-degenerate
energy levels (ε1↑ = −ε2↓ = −3 and ε1↓ = −ε2↑ = −1) when
θL = θR = π/2, P = 0.8, t =

√
3, T L

11 = T L
21 = 0.5, T R

11 =
T R

21 = 1/
√

2, and T α
n2 = T α

n3 = 0. The corresponding case for
degenerate levels (ε1↑ = ε1↓ = −1 and ε2↑ = ε2↓ = 1) is shown
in (b). The inset shows the two-level case corresponding to
Figure 4a, where we set ε1↑ = ε1↓ = −1, ε2↑ = ε2↓ = 1,
P = 0.2, t = 0.5, T = 1, and T ′ = 0.2 and 0.8. (c) G↑ in
the case that 1± states are decoupled from the system. ε1↓ =
−ε2↑ = −0.3, θL = θR = 0, P = 0.4, t = 0.3

√
3, T α

12 = T α
21 =

1/
√

3, and T α
13 = T α

24 = 1/3. The inset shows the corresponding
situation for P = 1. (d) The same case with (c), except that
ε1↓ = −ε2↑ = −0.6, θL = π/2, θR = 0, P = 1 and t = 0.6

√
3.

The inset shows the case when 1± states are coupled to the
system again, where ε1↑ = −1.7, ε1↓ = −0.7, ε2↑ = 0.7, and
ε2↓ = 1.7.

ε1± =
(
ε1↑ + ε2↓ ± √

(ε2↓ − ε1↑)2 + 4t2
)/

2 and ε2± =
(
ε1↓ + ε2↑ ± √

(ε2↑ − ε1↓)2 + 4t2
)/

2 are the renormal-
ized energy levels. When the system is spin-degenerate,
i.e., ε1↑ = ε1↓ and ε2↑ = ε2↓, we also have ε1+ = ε2+

and ε1− = ε2−, since the Rashba interlevel spin-flipping
doesn’t break the spin-degeneracy. The corresponding
tunneling Hamiltonian is HTα =

∑

kασξ

[T ασ
ξ a†

kασdξ + H.c.]

(ξ = 1±, 2±), and the coupling coefficients are T ασ
1+ =

−T̃ σ↑
α1 sinβ1 + T̃ σ↓

α2 cosβ1, T ασ
1− = T̃ σ↑

α1 cosβ1 + T̃ σ↓
α2 sinβ1,

T ασ
2+ = T̃ σ↑

α2 cosβ2 + T̃ σ↓
α1 sin β2, and T ασ

2− = −T̃ σ↑
α2 sinβ2 +

T̃ σ↓
α1 cosβ2. Notice that different from the single-level

case, now the Rashba phase doesn’t enter these coupling
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coefficients as an integer phase factor. For example,
T α↑

2+ = −[T α
21 cos(θα/2) + T α

24 sin(θα/2)] cosβ2e
−iφα

so +
[T α

13 cos(θα/2) + T α
12 sin(θα/2)] sinβ2e

iφα
so . Because

∣
∣T ασ

ξ

∣
∣2

is the coupling strength between the αth lead and the ξth
level for electrons with spin σ, the Rashba phase factor can
modulate the width and height of the peak at εξ in the
spectra of Gσ via tuning T ασ

ξ , which is shown in Figures 5a
and 5b. This effect is absent in the single-level system be-
cause of its simple topological structure. In Figure 5a the
four levels are chosen to be non-degenerate, which is re-
alized by applying an external field through the dot. We
see that the Rashba phase can modulate both the width
and height of the four peaks in the spectra of G↑, owing to
the interlevel spin-flip effect. When the external magnetic
field is absent, the spin-degeneracy is recovered and the
four renormalized levels merge to two, as depicted in Fig-
ure 5b. Now the details of each peak are smeared because
of the superposition of 1+ (1−) and 2+ (2−) states.

At last we investigate some specific systems, where the
Rashba SO coupling can cause some interesting effects.
For clarity, we first let the states 1± be decoupled from
the system (T ασ

1± = 0). Now only 2+ and 2− states are
coupled to the two leads. For specific setting of system
parameters we can make T L↑

2− = T R↑
2− = 0 when φso = 0.

Now for spin-up electrons, 2− state is also decoupled from
the system, so there is only one resonant peak at ε2+ in
G↑ (see the solid line in Fig. 5c). When φso increases, T L↑

2−
remains zero, while T R↑

2− is no longer zero. So now the 2−
state is side-coupled to the system via the right lead, and
the electrons can tunnel through the structure via two
paths. The first one is directly tunneling into the right
lead through 2+ state, and the second is first tunneling
through 2+ state, and then tunneling onto and out of 2−
state and finally into the right lead. There is a phase dif-
ference of π between these two paths, because when elec-
tron with energy ε2− tunnels onto and out of 2− state,
it gains a phase shift of π [32–35]. So the destructive in-
terference causes a dip in G↑ at ε2− when φso > 0, as we
can see in Figure 5c. The dip at ε2− doesn’t reduce to
zero, because the spin-down electrons also contribute to
G↑ through the matrix Γ α↓. If we choose P = 1, the con-
tribution from spin-down electrons Γ α↓ disappears, and
completely destructive interference can happen at ε2−,
which is shown in the inset of Figure 5c. Similarly we
plot Figure 5d, where we choose the parameters to make
T L↑

2− > 0 and T R↑
2− = 0 when φso = 0, so now 2− state is

side-coupled to the system and the dip appears. As φso

increasing, T R↑
2− is also finite, and electrons can tunnels to

the right lead directly through 2− state, which produces
the resonant peak at ε2−. So the Rashba phase can trans-
form the transmission zero into resonance peak. When 1±
states are coupled to the system again, the behavior of
G↑ at ε2± stated above still holds, provided that the four
states are not degenerate. This is shown in the inset of
Figure 5d. Besides, we can see in Figure 5d that the in-
terferences between the tunneling paths through the four
states produce Fano resonant structures at ε1− and ε2+.
Because ε2− is most closed to ε1−, the Fano resonance

at ε1− is mainly caused by interference between the paths
through 2− and 1− states. From the expression of T ασ

ξ we
know that T ασ

1+ 	 T ασ
2− and T ασ

1− 	 T ασ
2+ . According to ref-

erence [29], the level with strong coupling strength to the
leads serves as the reference channel, and the Fano reso-
nance shows up at the level with weak coupling strength.
So when we have |T ασ

1− | � |T ασ
2− |, the Fano resonances

appear at ε1− and ε2+, and the Breit-Wigner resonances
appear at ε1+ and ε2−, as shown in the inset of Figure 5d.
If the spin-degeneracy is recovered, 1± states will be su-
perposed with 2± states, and the phenomena would be
smeared.

In summary, we have investigated the spin-dependent
linear conductance spectra of a FM/QD/FM tunneling
system in the presence of both spin-flip scattering and
Rashba SO coupling. In the single-level system, it is found
that there could be a narrow peak or dip at the reso-
nant level, which is the result of spin-flip scattering. The
Rashba SO coupling can change the interference pattern
and greatly suppress the conductance. In the two-level sys-
tem, the Rashba interlevel spin-flipping makes the topol-
ogy of the structure different from that of the single-level
system, and its interplay with Rashba phase shift can tune
the coupling strengths between the leads and the renor-
malized levels. Thus, both the width and height of the
resonant peaks are modulated by the Rashba phase shift,
and in some specific system even the transition from res-
onance to antiresonance can occur.
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